- 1. API with NestJS #1. Controllers, routing and the module structure
- 2. API with NestJS #2. Setting up a PostgreSQL database with TypeORM
- 3. API with NestJS #3. Authenticating users with bcrypt, Passport, JWT, and cookies
- 4. API with NestJS #4. Error handling and data validation
- 5. API with NestJS #5. Serializing the response with interceptors
- 6. API with NestJS #6. Looking into dependency injection and modules
- 7. API with NestJS #7. Creating relationships with Postgres and TypeORM
- 8. API with NestJS #8. Writing unit tests
- 9. API with NestJS #9. Testing services and controllers with integration tests
- 10. API with NestJS #10. Uploading public files to Amazon S3
- 11. API with NestJS #11. Managing private files with Amazon S3
- 12. API with NestJS #12. Introduction to Elasticsearch
- 13. API with NestJS #13. Implementing refresh tokens using JWT
- 14. API with NestJS #14. Improving performance of our Postgres database with indexes
- 15. API with NestJS #15. Defining transactions with PostgreSQL and TypeORM
- 16. API with NestJS #16. Using the array data type with PostgreSQL and TypeORM
- 17. API with NestJS #17. Offset and keyset pagination with PostgreSQL and TypeORM
- 18. API with NestJS #18. Exploring the idea of microservices
- 19. API with NestJS #19. Using RabbitMQ to communicate with microservices
- 20. API with NestJS #20. Communicating with microservices using the gRPC framework
- 21. API with NestJS #21. An introduction to CQRS
- 22. API with NestJS #22. Storing JSON with PostgreSQL and TypeORM
- 23. API with NestJS #23. Implementing in-memory cache to increase the performance
- 24. API with NestJS #24. Cache with Redis. Running the app in a Node.js cluster
- 25. API with NestJS #25. Sending scheduled emails with cron and Nodemailer
- 26. API with NestJS #26. Real-time chat with WebSockets
- 27. API with NestJS #27. Introduction to GraphQL. Queries, mutations, and authentication
- 28. API with NestJS #28. Dealing in the N + 1 problem in GraphQL
- 29. API with NestJS #29. Real-time updates with GraphQL subscriptions
- 30. API with NestJS #30. Scalar types in GraphQL
- 31. API with NestJS #31. Two-factor authentication
- 32. API with NestJS #32. Introduction to Prisma with PostgreSQL
- 33. API with NestJS #33. Managing PostgreSQL relationships with Prisma
- 34. API with NestJS #34. Handling CPU-intensive tasks with queues
- 35. API with NestJS #35. Using server-side sessions instead of JSON Web Tokens
- 36. API with NestJS #36. Introduction to Stripe with React
- 37. API with NestJS #37. Using Stripe to save credit cards for future use
- 38. API with NestJS #38. Setting up recurring payments via subscriptions with Stripe
- 39. API with NestJS #39. Reacting to Stripe events with webhooks
- 40. API with NestJS #40. Confirming the email address
- 41. API with NestJS #41. Verifying phone numbers and sending SMS messages with Twilio
- 42. API with NestJS #42. Authenticating users with Google
- 43. API with NestJS #43. Introduction to MongoDB
- 44. API with NestJS #44. Implementing relationships with MongoDB
- 45. API with NestJS #45. Virtual properties with MongoDB and Mongoose
- 46. API with NestJS #46. Managing transactions with MongoDB and Mongoose
- 47. API with NestJS #47. Implementing pagination with MongoDB and Mongoose
- 48. API with NestJS #48. Definining indexes with MongoDB and Mongoose
- 49. API with NestJS #49. Updating with PUT and PATCH with MongoDB and Mongoose
- 50. API with NestJS #50. Introduction to logging with the built-in logger and TypeORM
- 51. API with NestJS #51. Health checks with Terminus and Datadog
- 52. API with NestJS #52. Generating documentation with Compodoc and JSDoc
- 53. API with NestJS #53. Implementing soft deletes with PostgreSQL and TypeORM
- 54. API with NestJS #54. Storing files inside a PostgreSQL database
- 55. API with NestJS #55. Uploading files to the server
- 56. API with NestJS #56. Authorization with roles and claims
- 57. API with NestJS #57. Composing classes with the mixin pattern
- 58. API with NestJS #58. Using ETag to implement cache and save bandwidth
- 59. API with NestJS #59. Introduction to a monorepo with Lerna and Yarn workspaces
- 60. API with NestJS #60. The OpenAPI specification and Swagger
- 61. API with NestJS #61. Dealing with circular dependencies
- 62. API with NestJS #62. Introduction to MikroORM with PostgreSQL
- 63. API with NestJS #63. Relationships with PostgreSQL and MikroORM
- 64. API with NestJS #64. Transactions with PostgreSQL and MikroORM
- 65. API with NestJS #65. Implementing soft deletes using MikroORM and filters
- 66. API with NestJS #66. Improving PostgreSQL performance with indexes using MikroORM
- 67. API with NestJS #67. Migrating to TypeORM 0.3
- 68. API with NestJS #68. Interacting with the application through REPL
- 69. API with NestJS #69. Database migrations with TypeORM
- 70. API with NestJS #70. Defining dynamic modules
- 71. API with NestJS #71. Introduction to feature flags
- 72. API with NestJS #72. Working with PostgreSQL using raw SQL queries
- 73. API with NestJS #73. One-to-one relationships with raw SQL queries
- 74. API with NestJS #74. Designing many-to-one relationships using raw SQL queries
- 75. API with NestJS #75. Many-to-many relationships using raw SQL queries
- 76. API with NestJS #76. Working with transactions using raw SQL queries
- 77. API with NestJS #77. Offset and keyset pagination with raw SQL queries
- 78. API with NestJS #78. Generating statistics using aggregate functions in raw SQL
- 79. API with NestJS #79. Implementing searching with pattern matching and raw SQL
- 80. API with NestJS #80. Updating entities with PUT and PATCH using raw SQL queries
- 81. API with NestJS #81. Soft deletes with raw SQL queries
- 82. API with NestJS #82. Introduction to indexes with raw SQL queries
- 83. API with NestJS #83. Text search with tsvector and raw SQL
- 84. API with NestJS #84. Implementing filtering using subqueries with raw SQL
- 85. API with NestJS #85. Defining constraints with raw SQL
- 86. API with NestJS #86. Logging with the built-in logger when using raw SQL
- 87. API with NestJS #87. Writing unit tests in a project with raw SQL
- 88. API with NestJS #88. Testing a project with raw SQL using integration tests
- 89. API with NestJS #89. Replacing Express with Fastify
- 90. API with NestJS #90. Using various types of SQL joins
- 91. API with NestJS #91. Dockerizing a NestJS API with Docker Compose
- 92. API with NestJS #92. Increasing the developer experience with Docker Compose
- 93. API with NestJS #93. Deploying a NestJS app with Amazon ECS and RDS
- 94. API with NestJS #94. Deploying multiple instances on AWS with a load balancer
- 95. API with NestJS #95. CI/CD with Amazon ECS and GitHub Actions
- 96. API with NestJS #96. Running unit tests with CI/CD and GitHub Actions
- 97. API with NestJS #97. Introduction to managing logs with Amazon CloudWatch
- 98. API with NestJS #98. Health checks with Terminus and Amazon ECS
- 99. API with NestJS #99. Scaling the number of application instances with Amazon ECS
- 100. API with NestJS #100. The HTTPS protocol with Route 53 and AWS Certificate Manager
- 101. API with NestJS #101. Managing sensitive data using the AWS Secrets Manager
- 102. API with NestJS #102. Writing unit tests with Prisma
- 103. API with NestJS #103. Integration tests with Prisma
- 104. API with NestJS #104. Writing transactions with Prisma
- 105. API with NestJS #105. Implementing soft deletes with Prisma and middleware
- 106. API with NestJS #106. Improving performance through indexes with Prisma
- 107. API with NestJS #107. Offset and keyset pagination with Prisma
- 108. API with NestJS #108. Date and time with Prisma and PostgreSQL
- 109. API with NestJS #109. Arrays with PostgreSQL and Prisma
- 110. API with NestJS #110. Managing JSON data with PostgreSQL and Prisma
- 111. API with NestJS #111. Constraints with PostgreSQL and Prisma
- 112. API with NestJS #112. Serializing the response with Prisma
- 113. API with NestJS #113. Logging with Prisma
- 114. API with NestJS #114. Modifying data using PUT and PATCH methods with Prisma
- 115. API with NestJS #115. Database migrations with Prisma
- 116. API with NestJS #116. REST API versioning
- 117. API with NestJS #117. CORS – Cross-Origin Resource Sharing
- 118. API with NestJS #118. Uploading and streaming videos
- 119. API with NestJS #119. Type-safe SQL queries with Kysely and PostgreSQL
- 120. API with NestJS #120. One-to-one relationships with the Kysely query builder
- 121. API with NestJS #121. Many-to-one relationships with PostgreSQL and Kysely
- 122. API with NestJS #122. Many-to-many relationships with Kysely and PostgreSQL
- 123. API with NestJS #123. SQL transactions with Kysely
- 124. API with NestJS #124. Handling SQL constraints with Kysely
- 125. API with NestJS #125. Offset and keyset pagination with Kysely
- 126. API with NestJS #126. Improving the database performance with indexes and Kysely
- 127. API with NestJS #127. Arrays with PostgreSQL and Kysely
- 128. API with NestJS #128. Managing JSON data with PostgreSQL and Kysely
- 129. API with NestJS #129. Implementing soft deletes with SQL and Kysely
- 130. API with NestJS #130. Avoiding storing sensitive information in API logs
- 131. API with NestJS #131. Unit tests with PostgreSQL and Kysely
- 132. API with NestJS #132. Handling date and time in PostgreSQL with Kysely
- 133. API with NestJS #133. Introducing database normalization with PostgreSQL and Prisma
- 134. API with NestJS #134. Aggregating statistics with PostgreSQL and Prisma
- 135. API with NestJS #135. Referential actions and foreign keys in PostgreSQL with Prisma
- 136. API with NestJS #136. Raw SQL queries with Prisma and PostgreSQL range types
- 137. API with NestJS #137. Recursive relationships with Prisma and PostgreSQL
- 138. API with NestJS #138. Filtering records with Prisma
- 139. API with NestJS #139. Using UUID as primary keys with Prisma and PostgreSQL
- 140. API with NestJS #140. Using multiple PostgreSQL schemas with Prisma
- 141. API with NestJS #141. Getting distinct records with Prisma and PostgreSQL
- 142. API with NestJS #142. A video chat with WebRTC and React
- 143. API with NestJS #143. Optimizing queries with views using PostgreSQL and Kysely
- 144. API with NestJS #144. Creating CLI applications with the Nest Commander
- 145. API with NestJS #145. Securing applications with Helmet
- 146. API with NestJS #146. Polymorphic associations with PostgreSQL and Prisma
- 147. API with NestJS #147. The data types to store money with PostgreSQL and Prisma
- 148. API with NestJS #148. Understanding the injection scopes
- 149. API with NestJS #149. Introduction to the Drizzle ORM with PostgreSQL
- 150. API with NestJS #150. One-to-one relationships with the Drizzle ORM
- 151. API with NestJS #151. Implementing many-to-one relationships with Drizzle ORM
- 152. API with NestJS #152. SQL constraints with the Drizzle ORM
- 153. API with NestJS #153. SQL transactions with the Drizzle ORM
- 154. API with NestJS #154. Many-to-many relationships with Drizzle ORM and PostgreSQL
- 155. API with NestJS #155. Offset and keyset pagination with the Drizzle ORM
- 156. API with NestJS #156. Arrays with PostgreSQL and the Drizzle ORM
- 157. API with NestJS #157. Handling JSON data with PostgreSQL and the Drizzle ORM
- 158. API with NestJS #158. Soft deletes with the Drizzle ORM
- 159. API with NestJS #159. Date and time with PostgreSQL and the Drizzle ORM
- 160. API with NestJS #160. Using views with the Drizzle ORM and PostgreSQL
- 161. API with NestJS #161. Generated columns with the Drizzle ORM and PostgreSQL
- 162. API with NestJS #162. Identity columns with the Drizzle ORM and PostgreSQL
- 163. API with NestJS #163. Full-text search with the Drizzle ORM and PostgreSQL
- 164. API with NestJS #164. Improving the performance with indexes using Drizzle ORM
- 165. API with NestJS #165. Time intervals with the Drizzle ORM and PostgreSQL
- 166. API with NestJS #166. Logging with the Drizzle ORM
- 167. API with NestJS #167. Unit tests with the Drizzle ORM
- 168. API with NestJS #168. Integration tests with the Drizzle ORM
- 169. API with NestJS #169. Unique IDs with UUIDs using Drizzle ORM and PostgreSQL
- 170. API with NestJS #170. Polymorphic associations with PostgreSQL and Drizzle ORM
- 171. API with NestJS #171. Recursive relationships with Drizzle ORM and PostgreSQL
- 172. API with NestJS #172. Database normalization with Drizzle ORM and PostgreSQL
- 173. API with NestJS #173. Storing money with Drizzle ORM and PostgreSQL
- 174. API with NestJS #174. Multiple PostgreSQL schemas with Drizzle ORM
- 175. API with NestJS #175. PUT and PATCH requests with PostgreSQL and Drizzle ORM
- 176. API with NestJS #176. Database migrations with the Drizzle ORM
- 177. API with NestJS #177. Response serialization with the Drizzle ORM
- 178. API with NestJS #178. Storing files inside of a PostgreSQL database with Drizzle
- 179. API with NestJS #179. Pattern matching search with Drizzle ORM and PostgreSQL
- 180. API with NestJS #180. Organizing Drizzle ORM schema with PostgreSQL
- 181. API with NestJS #181. Prepared statements in PostgreSQL with Drizzle ORM
- 182. API with NestJS #182. Storing coordinates in PostgreSQL with Drizzle ORM
- 183. API with NestJS #183. Distance and radius in PostgreSQL with Drizzle ORM
- 184. API with NestJS #184. Storing PostGIS Polygons in PostgreSQL with Drizzle ORM
PostgreSQL, together with PostGIS, allows us to store various types of geographical data. Besides working with simple coordinates, we can also store entire areas in the form of polygons. In this article, we learn how to handle polygons with PostgreSQL and the Drizzle ORM. While Drizzle ORM does not support it out of the box, we can create a custom type to handle it.
If you want to know the basics of working with geographical data using PostGIS and the Drizzle ORM, check out the following articles:
Polygons
A polygon is a two-dimensional object that represents a flat area with a defined boundary. A straightforward way of defining a polygon with PostGIS is to use the POLYGON() function. We need to provide the coordinates of each point of our polygon.
1 2 3 4 5 6 7 |
SELECT 'SRID=4326;POLYGON(( -73.981898 40.768094, -73.958094 40.800621, -73.949282 40.796853, -73.973057 40.764356, -73.981898 40.768094 ))'::geometry; |
Above, we use SRID 4326 to let PostGIS know that we defined coordinates with latitude and longitude.
It’s important to note that the first and last pair of coordinates must be identical. This ensures that our polygon is a properly enclosed geometric shape.
The outer and inner ring
Each polygon needs an outer ring. It defines the outer boundary of the polygon. Optionally, we can provide inner rings that represent holes in the polygon. Each inner ring should be fully contained within the outer ring and shouldn’t overlap or touch the outer boundary.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
SELECT 'SRID=4326;POLYGON(( -73.981898 40.768094, -73.958094 40.800621, -73.949282 40.796853, -73.973057 40.764356, -73.981898 40.768094 ), ( -73.970000 40.780000, -73.965000 40.780000, -73.965000 40.775000, -73.970000 40.775000, -73.970000 40.780000 ), ( -73.960000 40.790000, -73.955000 40.790000, -73.955000 40.785000, -73.960000 40.785000, -73.960000 40.790000 ))'::geometry; |
The GeoJSON format
Alternatively, we can use the GeoJSON type to represent our polygon. It includes the type of our geometry data and an array of rings in our polygon.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
SELECT '{ "type": "Polygon", "coordinates": [ [ [-73.981898, 40.768094], [-73.958094, 40.800621], [-73.949282, 40.796853], [-73.973057, 40.764356], [-73.981898, 40.768094] ], [ [-73.970000, 40.780000], [-73.965000, 40.780000], [-73.965000, 40.775000], [-73.970000, 40.775000], [-73.970000, 40.780000] ], [ [-73.960000, 40.790000], [-73.955000, 40.790000], [-73.955000, 40.785000], [-73.960000, 40.785000], [-73.960000, 40.790000] ] ] }'::geometry; |
The first array defines the outer ring. The following arrays define the inner rings. Finally, each coordinates pair is an array with two element. The first one is the longitude, the second one is the latitude.
Using polygons with the Drizzle ORM and NestJS
Unfortunately, the Drizzle ORM does not support polygons out of the box. Let’s create a custom type to handle it.
database-schema.ts
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
import { serial, text, pgTable } from 'drizzle-orm/pg-core'; import { customType } from 'drizzle-orm/pg-core'; const polygon = customType({ dataType() { return 'geometry(Polygon, 4326)'; }, }); export const areas = pgTable('areas', { id: serial().primaryKey(), name: text().notNull(), polygon: polygon('polygon').notNull(), }); export const databaseSchema = { areas, }; |
Thanks to writing the dataType function, creating a migration results in the following SQL query:
1 2 3 4 5 |
CREATE TABLE IF NOT EXISTS "areas" ( "id" serial PRIMARY KEY NOT NULL, "name" text NOT NULL, "polygon" geometry(polygon, 4326) NOT NULL ); |
Storing data
The most straightforward way to store our polygons in the database while using Drizzle ORM is to provide them in the GeoJSON format. To let the users provide them as an array, we need to write the toDriver method that converts the polygon data into a valid GeoJSON format.
database-schema.ts
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
import { customType } from 'drizzle-orm/pg-core'; type Coordinate = [number, number]; const polygon = customType<{ data: Coordinate[][] }>({ dataType() { return 'geometry(Polygon, 4326)'; }, toDriver(coordinates: Coordinate[][]): string { return JSON.stringify({ type: 'Polygon', coordinates, }); }, }); // ... |
As we’ve learned before, the polygon in the GeoJSON data is an three-dimensional array.
Now, we can use Drizzle to store polygons in the database.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
this.drizzleService.db .insert(databaseSchema.areas) .values({ name: 'Central Park', polygon: [ [ [-73.981898, 40.768094], [-73.958094, 40.800621], [-73.949282, 40.796853], [-73.973057, 40.764356], [-73.981898, 40.768094], ], ], }) .returning(); |
Validating the data
When using NestJS, we often use the class-validator library to validate the data sent by the user. While there is no built-in decorator to handle polygons, we can create a custom validator.
area.dto.ts
1 2 3 4 5 6 7 8 9 10 11 |
import { IsString, IsNotEmpty, Validate } from 'class-validator'; import { ArePolygonCoordinates } from './are-polygon-coordinates'; export class AreaDto { @IsString() @IsNotEmpty() name: string; @Validate(ArePolygonCoordinates) polygon: [number, number][][]; } |
To do it, we can create a class using the validate method.
are-polygon-coordinates.ts
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import { ValidationArguments, ValidatorConstraint, ValidatorConstraintInterface, } from 'class-validator'; @ValidatorConstraint() export class ArePolygonCoordinates implements ValidatorConstraintInterface { validate(value: unknown) { // Coordinates must be an array of polygons. if (!Array.isArray(value) || value.length === 0) { return false; } // Test each polygon for (const polygon of value) { if (!this.validatePolygon(polygon)) { return false; } } return true; } defaultMessage({ property }: ValidationArguments) { return `${property} must be valid GeoJSON polygon coordinates`; } // ... } |
Our validatePolygon method verifies if every polygon is valid.
If you want to implement more strict validation, you can check if the first and last pair of coordinates in a polygon is identical.
are-polygon-coordinates.ts
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import { ValidationArguments, ValidatorConstraint, ValidatorConstraintInterface, isLatitude, isLongitude, } from 'class-validator'; @ValidatorConstraint() export class ArePolygonCoordinates implements ValidatorConstraintInterface { validate(value: unknown) { // Coordinates must be an array of polygons. if (!Array.isArray(value) || value.length === 0) { return false; } // Test each polygon for (const polygon of value) { if (!this.validatePolygon(polygon)) { return false; } } return true; } validatePolygon(polygon: unknown) { // Polygons must be an array of coordinates. if (!Array.isArray(polygon)) { return false; } // Test every coordinate for (const coordinates of polygon) { if (!this.validateCoordinates(coordinates)) { return false; } } return true; } // ... } |
The validateCoordinates function uses the isLatitude and isLongitude functions built into the class-validator library.
are-polygon-coordinates.ts
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import { ValidationArguments, ValidatorConstraint, ValidatorConstraintInterface, isLatitude, isLongitude, } from 'class-validator'; @ValidatorConstraint() export class ArePolygonCoordinates implements ValidatorConstraintInterface { validate(value: unknown) { // Coordinates must be an array of polygons. if (!Array.isArray(value) || value.length === 0) { return false; } // Test each polygon for (const polygon of value) { if (!this.validatePolygon(polygon)) { return false; } } return true; } validatePolygon(polygon: unknown) { // Polygons must be an array of coordinates. if (!Array.isArray(polygon)) { return false; } // Test every coordinate for (const coordinates of polygon) { if (!this.validateCoordinates(coordinates)) { return false; } } return true; } validateCoordinates(coordinates: unknown) { // Coordinates need to be arrays with two elements if (!Array.isArray(coordinates) || coordinates.length !== 2) { return false; } const [longitude, latitude] = coordinates; return isLongitude(longitude) && isLatitude(latitude); } defaultMessage({ property }: ValidationArguments) { return `${property} must be valid GeoJSON polygon coordinates`; } } |
We can now use our AreaDto class in the controller to validate the data sent by the user.
areas.controller.ts
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
import { Body, Controller, Post } from '@nestjs/common'; import { AreasService } from './areas.service'; import { AreaDto } from './dto/area.dto'; @Controller('areas') export class AreasController { constructor(private readonly areasService: AreasService) {} @Post() create(@Body() area: AreaDto) { return this.areasService.create(area); } // ... } |
We can also use it in our service.
areas.service.ts
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
import { Injectable } from '@nestjs/common'; import { DrizzleService } from '../database/drizzle.service'; import { databaseSchema } from '../database/database-schema'; import { AreaDto } from './dto/area.dto'; @Injectable() export class AreasService { constructor(private readonly drizzleService: DrizzleService) {} async create(area: AreaDto) { const createdAreas = await this.drizzleService.db .insert(databaseSchema.areas) .values({ name: area.name, polygon: area.polygon, }) .returning(); return createdAreas.pop(); } // ... } |
Retrieving data
By default, PostgreSQL returns the polygon data in the WKB (Well-Known Binary) format.
However, this format is not very readable. To retrieve the data in the GeoJSON format, we can use the ST_AsGeoJSON function built into PostGIS.
1 2 3 |
SELECT id, name, ST_AsGeoJSON(polygon) FROM areas WHERE id = 1; |
Unfortunately, right now, we can’t tell Drizzle ORM to use the ST_AsGeoJSON when retrieving the data from a particular column. Until this PR is merged, we can use the wkx library in our fromDriver method to convert the WKB format to GeoJSON.
database-schema.ts
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import { customType } from 'drizzle-orm/pg-core'; import { Geometry } from 'wkx'; type Coordinate = [number, number]; interface GeoJson { type: string; coordinates: Coordinate[][]; } const polygon = customType<{ data: Coordinate[][]; driverData: string }>({ dataType() { return 'geometry(Polygon, 4326)'; }, toDriver(coordinates: Coordinate[][]): string { return JSON.stringify({ type: 'Polygon', coordinates, }); }, fromDriver(data: string) { const geoJson = Geometry.parse( Buffer.from(data, 'hex'), ).toGeoJSON() as GeoJson; return geoJson.coordinates; }, }); // ... |
Thanks to this change, our data is converted to GeoJSON, which is much easier to read.
Summary
In this lesson, we’ve learned how to store PostGIS polygons in a PostgreSQL database using the Drizzle ORM. Since it’s not supported out of the box, we had to create a custom Drizzle type to handle it. We also wrote a custom validator to ensure that users provide the polygons in the correct format. All that gives us solid foundations to work with geographical data effectively in our applications.